エネルギーによる液状化判定法の適用性検討と FL 法との対比

國生 剛治1

1 中央大学理工学部都市環境学科

概 要

液状化の判定には応力的判定法(FL法)が標準的方法として使われている。液状化発生をより直接的に 支配する物理量として損失エネルギーに着目したエネルギー的液状化判定法も提案されてきたが実用には 至っていない。継続時間の長い海溝型地震や継続時間は短いが振幅の大きな地殻内直下型地震など多種類 の地震動に対し統一的に液状化判定を行うためには、エネルギーに基づいた方法が優れている。ここでは 密度・細粒分含有率の異なる三軸液状化試験のデータをエネルギー的観点から分析し、供試体中の損失エ ネルギーが繰返し応力の波数や振幅に関わらず間隙水圧上昇や発生ひずみと一意的な関係があることを示 し、それに基づいたエネルギー的液状化判定の具体的方法を提案した。さらにエネルギー法をモデル地盤 に適用し、同一地震動を入力させた応力法と比較することにより、その特徴と可能性を明らかにした。

キーワード:液状化判定法,損失エネルギー,ひずみエネルギー,波動エネルギー,液状化強度比

1. はじめに

液状化判定法は Seed-Idriss の研究¹以来,力の釣り合い に基づいた応力法 (加速度により地盤に発生するせん断応 力と砂の非排水繰返し強度を比較する)が標準的方法とし て使われてきた。そこでは,砂の原位置非排水繰返し強度 は標準貫入試験などの原位置サウンディング試験により 評価する。一方地震時せん断応力は,地表で与える最大水 平加速度より簡易に推定するか,あるいは設計地震動を用 いた地盤の応答解析から計算する。この際,液状化判定で 想定する地震動に関わるパラメータ (マグニチュード,継 続時間,波形の特性など)の影響を種々の係数により処理 している。

一方,液状化発生に直結する物理量として,せん断応力 の代わりにひずみを重視する方法²⁾や損失エネルギーに 着目した液状化判定法³⁾⁴⁾も提案されている。特にエネル ギーについては,非排水繰返しせん断試験での間隙水圧上 昇が,供試体の単位体積当たり内部損失エネルギーと密接 に関連していることは幾つかの既往の研究で指摘され⁵⁾⁶⁾⁷⁾⁸⁾⁹,地震動の繰返し回数や波形の違いに関わらずその エネルギーにより,液状化発生を評価できる可能性が示さ れてきた。

2011 年東北地方太平洋沖地震のように継続時間の長い 海溝型地震や 1995 年兵庫県南部地震のように地殻内で起 きる短く激しい揺れの直下地震に対しても統一的に液状 化判定を行うためには,エネルギーに基づいた方法が優れ ている。それにも関わらず,エネルギーによる判定法は実 務の場で使われるまでには至っていないのが現状である。 ここでは、非排水繰返し三軸試験結果のエネルギー的分 析に基づきエネルギー法の特長を生かした簡易液状化判 定の可能性を検討する。さらにエネルギー法をモデル地盤 に適用して応力法と比較することにより、その適用性と特 徴を調べる。

2. 三軸試験での内部損失エネルギー

液状化進行にともなう計測値と内部損失エネルギーとの関係を調べるために、以前に中型三軸試験機を用いて行った一連の液状化試験の結果¹⁰⁾を用いた。この試験では径 10cm 高さ 20cm の供試体により、目標相対密度 D_r =30,50,70%、細粒分含有率 F_c =0,5,10,20%で供試体を作成し試験を行っている。用いた試験材料は千葉県富津の埋立砂をふるい分けしたクリーンサンドであり、それに混合させる細粒土として低塑性シルト(I_p =6)を用いている。試料は湿潤締固め法により目標相対密度に調整し、2重負圧法により B値 0.95以上の条件で完全飽和させた状態で、有効拘束圧 σ'_c =98 kPa、背圧 196kPa で等方圧密し、応力制御により軸応力のみを一定振幅 σ_d で変動させることにより液状化試験を行った。試験の主要な条件と結果を表1にまとめているが、詳細については文献 10)を参照いただきたい。

Nominal relative density D _r (%)	Fines content F _c (%)	Actual <i>D_r</i> (%) before cyc. loading	Cyclic stress ratio in tests $\sigma_{d}/2\sigma$	Number of cycles N_c				Cyclic st	rength rat	tio <i>R_{L 20}</i> f	^f or N _c =20	Normalized energy $\Delta W / \sigma_{c}'$				
				ε _{DA}			<i>∆u /σc'</i>		\mathcal{E}_{DA} $\Delta u / \sigma c'$				ε _{DA}	E DA		
				2%	5%	10%	1.0	2%	5%	10%	1.0	2%	5%	10%	1.0	
30	0	27	0.118	32	32	32	33	0.122	0.122	0.122	0.123	0.0050	0.0077	0.0104	0.0156	
		34	0.144	1.7	1.7	1.7	2.6	0.122	0.122	0.122	0.123	0.0038	0.0076	0.0101	0.0175	
		36	0.124	16	16	17	17	0.122	0.122	0.123	0.122	0.0050	0.0110	0.0208	0.0213	
50	0	49	0.194	3.6	4.0	4.4	4.5	0.154	0.155	0.155	0.156	0.0072	0.0170	0.0250	0.0196	
		51	0.146	34	34	34	35	0.157	0.157	0.158	0.158	0.0086	0.0130	0.0207	0.0162	
		52	0.157	17	17	18	18	0.154	0.154	0.155	0.155	0.0082	0.0125	0.0210	0.0162	
		53	0.150	12	12	13	13	0.140	0.140	0.141	0.141	0.0070	0.0120	0.0210	0.0160	
70	0	69	0.259	1.7	3.6	6.6	5.0	0.163	0.170	0.181	0.182	0.0120	0.0300	0.0650	0.0395	
		70	0.299	1.6	3.5	5.8	3.5	0.186	0.195	0.200	0.192	0.0125	0.0360	0.0700	0.0310	
		70	0.198	13	16	19	17	0.183	0.187	0.195	0.190	0.0140	0.0280	0.0628	0.0335	
		71	0.313	1.7	4.2	7.5	5.5	0.197	0.213	0.227	0.225	0.0130	0.0365	0.0930	0.0510	
50	10	48	0.096	33	33	33	34	0.105	0.105	0.105	0.106	0.0048	0.0064	0.0098	0.0150	
		49	0.123	10	10	10	10	0.109	0.108	0.109	0.108	0.0045	0.0090	0.0175	0.0277	
		51	0.151	2.7	2.7	2.7	3.0	0.106	0.106	0.106	0.106	0.0046	0.0096	0.0172	0.0272	
50	20	49	0.082	37	37	37	38	0.090	0.090	0.090	0.092	0.0047	0.0075	0.0124	0.0210	
		54	0.103	7.6	7.6	7.6	8.5	0.089	0.089	0.089	0.089	0.0038	0.0068	0.0097	0.0185	
		54	0.147	0.7	0.7	0.8	1.3	0.090	0.090	0.090	0.091	0.0044	0.0091	0.0163	0.0217	
70	5	67	0.197	2.0	2.6	3.6	3.5	0.155	0.157	0.160	0.166	0.0103	0.0135	0.0258	0.0202	
		69	0.160	13	14	15	16	0.153	0.154	0.155	0.157	0.0089	0.0147	0.0247	0.0280	
		72	0.218	4.6	5.7	7.7	8.9	0.187	0.189	0.194	0.202	0.0125	0.0230	0.0455	0.0630	
70	20	70	0.111	5.7	5.7	5.7	6.9	0.090	0.090	0.090	0.087	0.0043	0.0083	0.0150	0.0320	
		76	0.167	0.7	0.7	0.8	2.0	0.096	0.096	0.096	0.099	0.0056	0.0123	0.0233	0.0605	
		76	0.094	29	29	29	31	0.100	0.100	0.100	0.104	0.0047	0.0087	0.0168	0.0315	

表 1 富津砂の繰返し非排水三軸試験の条件と得られた液状化強度比, 単位体積当たりの基準化損失エネルギー

図 1 には両振幅軸ひずみ $\varepsilon_{DA} = 5\%$ と $\Delta u/\sigma'_c = 1.0$ に対応した応力比 $R_L = \sigma_d/2\sigma'_c$ と載荷回数 N_c の関係を両対数グラフ上にプロットしている。図中の(a)は細粒分含有率 $F_c=0$ で目標相対密度 $D_r \approx 30, 50, 70\%$, (b)は $D_r \approx 50\%$ で $F_c=0\sim 20\%$, (c)は $D_r \approx 70\%$ で $F_c=0\sim 20\%$ の条件である。図中のプロット点をベキ関数式(1) により近似した場合の直線が図中に示されている。

$$\sigma_d / 2\sigma_c' = a N_c^{-b} \tag{1}$$

最小二乗法で求めた定数 $a \ge b$ は,後述のエネルギーとの 相関を求める際に使っている。バラツキはあるものの, $\varepsilon_{DA} = 5\%$ に対応した応力比は D_r の減少 $\ge F_c$ の増大にと もなって減少する傾向が見られ,また, $\Delta u/\sigma'_c = 1.0$ の条 件での応力比ともほぼ一致することが分かる。

次に、これらの同じ試験データより損失エネルギーを算定した。図 2には $D_r=51\%$, $F_c=0\%$ についての軸応力 σ_d と軸ひずみ ε の関係を例示している。これより単位体積当たりの損失エネルギー ΔW は各サイクルごとに図中に示す履歴面積 A-B-C-D を k=1 から任意のサイクルまで累積することにより次式で計算できる。

$$\Delta W = \sum_{k} \left(\int_{A}^{D} \sigma_{d} d\varepsilon \right)_{k} \tag{2}$$

図3には一例として、載荷回数 N_c に対する損失エネル ギー ΔW の変化を軸応力 σ_d ・軸ひずみ ε ・過剰水圧 Δu と 共に示している。これより、ひずみ振幅が小さい間は損失 エネルギーも小さい値に留まっているが、水圧上昇が

図 1 繰返し応力比 R_L と繰返し回数 N_c の関係 (a) F_c =0, D_r ≈30,50,70%, (b) D_r ≈ 50%, F_c =0, 10, 20%, (c) D_r ≈ 70%, F_c =0, 5, 20%

 $(D_r = 51\%, F_c = 0\%)$

100%に近づき、ひずみが急増するのに合わせて増加する ことが分かる。

図 4(a)には、このようにして得られた損失エネルギー ΔW を有効拘束圧 σ'_c で除して無次元化した基準化損失エ ネルギー $\Delta W / \sigma'_c$ を横軸にとり、縦軸には対応する軸ひず み ε_{DA} と水圧上昇率 $\Delta u / \sigma'_c$ をとって $F_c=0$ のクリーンサン ドで行った実験結果について示している。図(b)には図(a) に細い破線で示す範囲についてエネルギー~水圧関係の 拡大図を示している。両者の間には、 D_r の大きな違いにも 関わらず $\Delta W / \sigma'_c = 0.02$ かそれ以下でほぼ $\Delta u / \sigma'_c = 100\%$ に 上昇する相関関係があり、損失エネルギーは液状化発生ま での非常に良い指標であることが分かる。

一方,軸ひずみと損失エネルギーの関係は目標相対密度 D_r の大きさごとに大きく異なる。この関係に見られるバラ ツキは,目標相対密度 D_r と供試体ごとの密度にズレがあ ることが主な原因と考えられ,それを考慮すればほぼ同じ 経路で $\Delta W / \sigma'_c$ に対して単調増加していると見なすこと ができよう。つまり水圧上昇だけでなく,液状化発生以降 も含めて発生ひずみの評価が損失エネルギーにより可能

図 3 損失エネルギー*ΔW*(a), 軸応力 *σ*_d(b), 軸ひずみ ε(c), 過剰間隙水圧 *Δu*(d)と 載荷回数 *N*_cの関係の一例

であると考えられる。

図 5 には両振幅軸ひずみが $\epsilon_{DA}=2$, 5, 10%あるいは水圧 が $\Delta u/\sigma'_c = 1.0$ に達するまでの $\Delta W/\sigma'_c$ と繰返し回数 N_c を 縦軸と横軸にとって,両対数グラフ上にプロットしている。 図中の(a)が $F_c=0$, (b)が $F_c=5\sim20$ %の結果である。同じ D_r や F_c の条件で繰返し応力比 R_L の異なる (N_c の異なる) 試 験結果を同一記号のプロットで表わし折線で結んでいる。 右上がりあるいは左上がりの統一的変動傾向は見い出せ ず,特に D_r が小さく F_c の大きな液状化し易い ($\Delta W/\sigma'_c$ の 比較的小さな) 試料については,多少のバラツキはあるも

図 4 基準化損失エネルギー $\Delta W / \sigma_c$ に対する軸ひずみ ε と水圧上昇率 $\Delta u / \sigma_c$ の関係 (a)と破線枠内の水圧上昇率 $\Delta u / \sigma_c$ についての拡大グラフ(b) (F_c =0, D_r ≈30, 50,70%)

のの N_c に関わらず縦軸のエネルギー値はほぼ一定と判断 できる。すなわち少なくとも室内要素試験からは,あるひ ずみ値に達するまでの損失エネルギー,あるいは水圧上昇 率 100%の液状化発生に至るまでの損失エネルギーは,継 続時間や載荷繰返し数によらずほぼ一定である。つまり, 液状化発生やそれ以降のひずみ増加が損失エネルギーに より一意的に評価できることになる。さらに,バラツキは あるものの同じひずみに達するまでの損失エネルギーが 継続時間や載荷繰返し数によらずほぼ一定であると解釈 できることから,液状化実験の整理で使われる図 1 のよ うな応力比 R_L~繰返し回数 N_c関係は,実は等損失エネル ギー線に他ならないことが分かる。

以上はすべて有効拘束E σ'_c =98 kPa での結果であるが, 図 6 では既往の実験結果⁷⁾を使って σ'_c の影響について見 ている。ここでは3 段階の異なる拘束圧下で行われたひず み制御単純せん断試験で得られたデータを使い,水圧 100%上昇までの基準化エネルギー $\Delta W / \sigma'_c$ を整理してい る。これよりバラツキはあるものの,損失エネルギー ΔW は σ'_c にほぼ比例して増大しており,単位体積当たりの損 失エネルギーを $\Delta W / \sigma'_c$ の無次元量により基準化して表 わすことが妥当であることが示されている。

図 7 同じ *c*_{DA} に達するための液状化強度比 *R*_{L20} と
 基準化エネルギーΔW/σ_c'とその近似曲線

次に図1に示す実験結果から、Nc=20回で軸ひずみ両振 幅 $\varepsilon_{DA}=2$, 5, 10%に達する液状化強度比 $R_L = \sigma_d/2\sigma_c'$ を読 み取り,図4から読み取った同じ EDAに達するための基準 化エネルギー $\Delta W / \sigma'_{c}$ との関係をプロットしたのが図 7 である。F_c=0%のクリーンサンドだけでなく、細粒分を含 む砂についてもプロットしている。この際, Nc=20回に対 応した R_L を1供試体毎に $\Delta W / \sigma'_c$ と対応させるため,図1 の両対数軸グラフに最小自乗法で描いた式(1)による近 似直線の勾配を用いている。すなわち勾配 -b の平行な 直線を各プロット点から描き、それが N=20 と交わる点の 応力比を R_{L20} とし、対応する $\Delta W / \sigma'_c$ に対しプロットして いる。図 7 の白抜き記号 (\Box , \bigcirc , \bigtriangleup) は $F_c=0$ のクリー ンサンドについての実験結果に対応しており、それ以外の 記号は細粒分を F_c=5~20% 加えた試験に対応している。 これより,バラツキはあるものの R_L に対し $\Delta W / \sigma_c$ が単調 に増加する傾向は明らかであり、しかも Fcの値に関わら ずほぼ一意的関係が成り立つことが読み取れる。ε_{DA}=5%

図 8 道路橋示方書の N₁~R_{L20} 関係と R_{L20} ~ΔW/σ_c'関係 から求めた基準化損失エネルギーΔW/σ_c'と N₁ 値の関係

のプロットについて $\Delta W / \sigma'_c \geq R_L$ の関係を, 実質的に問題 となる R_L は 0.1 以上と考えられることから $R_L \geq 0.1$ の範囲 で 2 次曲線で近似すると, 次式が得られる (相関係数 0.89)。

$$\Delta W / \sigma_c' = 0.032 - 0.48 R_{L20} + 2.40 R_{L20}^2 \tag{3}$$

図7にはこの EDA=5%に対応した近似式を太い実線カーブ で示している。さらに、図 4 から $\Delta W / \sigma'_c$ と ε_{DA} が ε_{DA} =10% 程度まではほぼ比例関係にあることから、式(3)の $\Delta W/\sigma'_{c}$ を0.4倍と2.0倍して描いた EDA=2%と10%に対応した細線 カーブも示されている。小さな四角と三角でプロットした 対応する実験値の変化傾向とほぼ整合していると言えよ う。図7より、細粒分含有率の大小に依らずつまり土粒 子構造の違いに関わらず、 $\Delta W / \sigma'_c \sim R_L$ 関係はほぼ一義的 に定まると判断できる。今後, 不撹乱試料による実証は必 要ではあるが、 $\Delta W / \sigma'_c \sim R_L$ 関係は自然地盤における土粒 子構造の差異に関わらず一意的に決まる可能性も考えら れる。 $\Delta W / \sigma'_c \sim R_L$ 関係の一意性を仮定した場合,対象と する地盤の例えば ϵ_{DA} =5%に対応した液状化強度比 R_L が与 えられれば、それから対応する基準化損失エネルギー $\Delta W / \sigma'_{c}$ が求められることになる。つまり現在の FL 法に 使うデータからエネルギー法のデータに容易に変換でき ることを意味している。

現在使われている液状化判定法の多くでは、標準貫入試験の補正N値 N_1 に基づいて原地盤の液状化応力比 R_L を評価している。これらのうち道路橋示方書¹¹⁾では、細粒分の少ない砂(F_c <10%)について N_c =20回で液状化(ε_{DA} =5%)に達する応力比 R_{L20} について式(4)が使われている。

$$R_{L20} = \begin{cases} 0.0882\sqrt{N_1/1.7} & :N_1 < 14 \\ 0.0882\sqrt{N_1/1.7} + 1.6 \times 10^{-6} (N_1 - 14)^{4.5} & :14 \le N_1 \end{cases}$$
(4)
こに補正 N 値 N₁ は次式によって求めている。

Σ

$$N_1 = 1.7N / (\sigma_v' / p_0 + 0.7)$$
(5)

図 7 から得られた式(3)と道路橋示方書の式(4)を組み合わせて、 ϵ_{DA} =5%に対応した基準化損失エネルギー $\Delta W / \sigma'_c$ と補正N 値 N_1 の関係を求め、図 8 に太線カーブで示している。同様に ϵ_{DA} =2%、10%のエネルギーについても同図中の細線カーブのように得られる。細粒分含有率や他の影響を考えた $R_L \sim N_1$ 関係があれば、それを式(3)と組み合わせることにより容易に $\Delta W / \sigma'_c \sim N_1$ 関係が得られることになる。ここで強調すべきは、液状化強度比 $R_L \sim N_1$ 関係においては載荷繰返し回数 N_c を指定する必要があるが、 $\Delta W / \sigma'_c \sim N_1$ 関係を用いる場合はその必要はなくなることである。

このように決定した損失エネルギーを液状化判定で地 震波動エネルギーと比較するためには、砂の内部損失エネ ルギーに対応してどれだけの外部エネルギーが必要かを 知っておかなければならない。このため前述の一連の三軸 試験結果に基づいて、損失エネルギーと外部から与えたひ ずみエネルギーとの関連を検討した。図2 に例示した応 力ひずみカーブの A-B-C-D 履歴ループを k サイクル目と し、ループの頂点 B、C を結ぶ線分の中点を O とすると、 ひずみエネルギーW は、 k=1 から任意のサイクルまで各 サイクルの三角形 OBB'の面積を累積することにより次式 で計算できる。

$$W = \sum_{k} 4 \left(\text{OB'} \times \text{BB'} / 2 \right)_{k}$$
(6)

図 9 はすべての実験ケースについて、単位体積当たり のひずみエネルギーWを計算し、有効拘束圧で基準化した 値 W/σ'_c を軸ひずみ ε_{DA} に対してプロットしている。同図 には基準化損失エネルギー $\Delta W/\sigma'_c$ と ε_{DA} との関係も対応

する実験条件ごとに同じ記号で示している。 $W/\sigma'_c \sim \epsilon_{DA}$ 関係と $\Delta W/\sigma'_c \sim \epsilon_{DA}$ 関係は,ほぼ相似的関係にあることが 分かる。図 10 は W/σ'_c と $\Delta W/\sigma'_c$ を縦軸と横軸にとり表 1に示したすべての実験結果について直接比較したグラ フである。両者は比例関係にはないが,プロットは一線上 に集中しており,ほぼ一意的関係にあることは明らかであ る。エネルギーがある程度以上大きくなる $\Delta W/\sigma'_c$ >0.001 のすべてのプロットを対象に次式のような近似式をあて はめると 0.997 の高い相関係数が得られる。

$$W/\sigma_{c}' = 5.4 \times 10^{1.25 \times \log_{10}(\Delta W/\sigma_{c}')}$$
 (7)

図中にはこの関数を太線カーブで記入している。すなわち 液状化試験中の供試体内では,相対密度や細粒分含有率の 違いに関わらず,内部損失エネルギーとそれに対応して外 部から与える必要のあるエネルギーの間にほぼ一意的関 係が成り立つと言える。この関係を用いることにより,以 下に述べる地震波動エネルギーとの比較が可能となる。

3. 地震波動エネルギーの評価

地震波動エネルギーの評価には,2つの方法が考えられる。最初の方法はあるサイトでの入射エネルギー*E*_{IP}を以下の簡便式で計算するものである。

$$E_{IP} = E_{Total} / \left(4\pi R^2 \right) \tag{8}$$

$$\log_{10} E_{Total} = 1.5M + 1.8 \tag{9}$$

ここに式(8)は実体波のエネルギー放出源からの球面伝播 を仮定して,単位面積当たりの波動エネルギー*E*_{IP}(kJ/m²) を全放出エネルギー E_{Total} (kJ) と地震エネルギー放出中心 からの距離 R (km) により求めるものである。 E_{Total} (単位 kJ) は、地震マグニチュード M から式(9)¹²⁾ により計算さ れることが多い 。

既提案のエネルギー的液状化判定法³⁾⁴⁾では,多少の補 正はされているが基本的に式(8)(9)を用いてサイトに到達 する地震波動エネルギーが計算されている。しかし,計算 されたエネルギーがサイトのどの深度で定義されるかは 触れられていない。その代わりに多数の液状化・非液状化 事例について,各地点の式(8)によるエネルギーの無次元化 関数を基準化N値 N₁に対してプロットしたグラフにおい て,液状化の有無の概略境界を定める方法を用いている。

一方, 國生・鈴木⁽³⁾ は 30 地点の鉛直アレー強震観測記 録を分析し, 上昇エネルギー E_u が深部から地表に近付くに したがい急速に減少する一般的傾向が見られることを明 らかにした。また鉛直アレー最深部を工学的基盤と仮定し た場合, 任意の層での上昇波エネルギー E_u と基盤の入射エ ネルギー E_{IP} との比 $\beta = E_u / E_{IP}$ は,対応する2層のインピ ーダンス ρV_s の比 α により次式でほぼ近似できることを 示した¹⁴⁾。

 $\beta = \alpha^{0.7}; \quad \alpha < 1 \tag{10}$

さらに, 鉛直アレー最深部を工学的基盤として, そこで の入射エネルギーを計算したところ, 震源メカニズムや伝 播経路を反映してサイトによるバラツキの大きな結果と なる。しかし, 式(8)(9)による簡易式は, 実測プロットと 比較して震源距離 *R* に対する低減傾向やマグニチュード *M* による違いを概ね評価できていることが分かった¹³⁾。 今後, 基盤での入射エネルギーの評価精度を上げていく必 要はあるが, 式(8)(9)と式(10)により液状化対象層での上昇 エネルギーを概略評価することが可能と思われる。

式(8),(9)を用いる方法とは異なる第2の方法として, サイトの設計地震動が別途与えられている場合には,上昇 エネルギーを解析的に決めることができる。すなわち成層 線形地盤モデルについての SH 波重複反射理論によれば, ある深度での地震動が与えられれば任意の層境界での上 昇波・下降波が計算できる。また等価線形解析を行うこと により,ひずみ依存非線形物性も近似的に考慮できる¹⁵⁾。 液状化対象層の上昇エネルギー E_u は,その層での上昇波速 度波形i(上昇波加速度波形の1回積分で計算)の2乗を 地震継続時間 t_1 全体にわたり積分し,地層のインピーダン ス ρV_s を乗じることにより次式で求められる。

$$E_{u} = \rho V_{s} \int_{0}^{t_{1}} (\dot{u})^{2} dt$$
 (11)

図 11 検討対象とした基盤上に載る層厚 10m の地盤モデル A, B

本論文では新たに提案するエネルギー法と現行の応力 法をなるべく同一条件の下で比較することを目的として いる。このため、応力法が最初に提案された時の基本的な 考え方¹⁾に立ち戻り、地表に加速度入力を与えて1次元 等価線形応答解析を行う第2の方法により上昇エネルギ ーを算定する。なお、液状化を実際に引き起こすのは上昇 波ばかりでなく地表などで反射して生じた下降波も含ま れるが、エネルギー的には下降波は上昇波のなかに含まれ ていたものであり、上昇波エネルギーのみを考慮すること で十分である。

等価線形解析では、ひずみ振幅に応じて収束計算により 求めた等価せん断剛性 G と履歴減衰定数 D を用いて地盤 の応答を計算する。この D の値により、式(7)に依らずと も次式を使って損失エネルギーからひずみエネルギーが 得られることになり、しかも式(7)よりも応答解析結果に整 合しているように思える。

$$W/\sigma_c' = \left(\Delta W/\sigma_c'\right) / (\pi D) \tag{12}$$

しかし、広いひずみ範囲で低サイクル繰返し載荷試験から 求められる等価減衰定数 D に基づいた式(12)は、液状化に 向かう砂のエネルギー損失メカニズムを正しく反映して いない可能性がある。そこでここでは、液状化試験の応力 ~ひずみ関係を直接用いて導かれた式(7)を用いることと している。

4. 地盤モデルでの検討

エネルギー法を応力法(FL法)と単純な条件の下で比 較検討するため,図 11 に示すような工学基盤上の層厚 10mの砂地盤モデルA,Bを設定する。いずれも砂地盤を

図 12 液状化検討に用いた東北地方太平洋沖地震 (*M* =9.0) での K-net 浦安 EW 方向の地表加速度波形(上部) と上昇エネルギー(下部):(a) 実時間(RT), (b)1/2 圧縮時間(RT/2)

図 13 地盤モデル A, B について RT, RT/2 波形で計算した最 大加速度(a) と最大せん断応力(b)の深度分布

上から厚さ 2m の層 L1~L5 に分割して考える。モデル A の均質地盤では標準貫入試験の補正N値がL1~L5 で N_1 =8 であり、モデル B の不均質地盤では L1~L3 が N_1 =8 で L4~L5 が N_1 =12 である。地下水面はいずれも地表から 2m の深さで、不飽和の L1 の湿潤密度を ρ_t =1.8 t/m³、L-2~5 の飽和密度を ρ_{sat} =1.9 t/m³とする。深度に対する N 値の 変化は N_1 の値から式(5)により逆算し、S 波速度は道路橋 示方書に掲載された以下の経験式で N 値より計算する。

$$V_s = 80N^{1/3}$$
 (13)

なお各層ごとに V_sは一定値とし、それぞれの中間深度での値を当てはめている。

等価線形解析に用いるせん断剛性 G と減衰定数のひず み振幅依存性 D については, Hardin-Drnevich モデル¹⁶⁾ を 多少変形した次式を用いた¹⁷⁾。

$$G/G_0 = \frac{1}{1 + \left(\gamma/\gamma_r\right)^{\alpha}} \tag{14}$$

$$\frac{D - D_0}{D_{\max} - D_0} = \left(1 - \frac{G}{G_0}\right)^{\beta}$$
(15)

ここに、 G_0 =初期せん断剛性、 γ_r =基準ひずみ、 D_0 =初期減 衰定数 (1%)、 D_{max} =最大減衰定数(28%)であり、ベキ定 数 α 、 β は α =0.84、 β =1.44 とした¹⁷⁾。基準ひずみ γ_r は平 均主応力 σ'_m に応じ $\gamma_r \propto \sigma'_m^{0.5}$ によって変化させた¹⁶⁾。

地震動は 2011 年東北地方太平洋沖地震の際に千葉県浦 安市の K-net 浦安で得られた本震の EW 方向加速度記録 (図 12) を用い,モデル地盤の地表に入力した。地震動 の継続時間は初動から SH 波主要動の範囲と思われる時点 までの 236 秒間とした。本研究では入力地震動の周期成分 や継続時間の影響を見るために,この地震動を実時間 (RT) と,時間軸を 1/2 に圧縮 (RT/2) してから入力する 2 ケー スの解析を行った。図 12(a)(b)の上段に,用いた2種類の 加速度波形を示す。

図 13(a)(b)には最大加速度と最大せん断応力の深度分 布をRTとRT/2入力について示す。モデルA,Bの違いに 関わらず,加速度とせん断応力の分布はほぼ同じであり, またRTに比べてRT/2では加速度やせん断応力はわずか に低減する程度で,大きな違いはないことが分かる。

5. 応力法による液状化判定

応力法の代表として道路橋示方書による液状化判定法 (FL法)¹¹⁾が良く知られている。その考え方の骨子は, ある深度の飽和砂質土の要素について,動的せん断強度比 *R*と地震時せん断応力比*L*の比較により,次式で定義した *F_L*値が1.0を下回る時に,液状化が発生するとするもので ある。

$$F_L = R/L \tag{16}$$

ここで R は繰返し三軸試験の液状化強度比 R_Lより原地盤 の静止土圧係数 K₀を考慮して次式により算定する。

$$R = R_L \left(1 + 2K_0 \right) / 3 \tag{17}$$

一方,地震時せん断応力比 L については,地震時最大せん 断応力比 L_{max}から次式により算定する。

$$L = r_n L_{\max} = r_n \tau_{\max} / \sigma'_v = \tau_0 / \sigma'_v \tag{18}$$

ここに $r_n = \tau_0 / \tau_{max}$ は最大せん断応力 τ_{max} を等価な繰返し 数と振幅 τ_0 の繰返し応力に低減する係数¹⁾ である。この 応力低減係数 r_n の値としては、次式¹⁸⁾ により地震マグニ チュード *M* から決めることとする。

$$r_n = 0.1(M - 1)$$
(19)

式(19)から M=7.5 に対して得られる $r_n=0.65$ は一般的に良 く用いられる値であるが、これと式(17)を組み合わせ静止 土圧係数 $K_0=0.5$ とすると、式(16)による F_L は次式のよう になる。

$$F_L = R/L = \frac{1+2K_0}{3r_n} \frac{R_L}{L_{\max}} \approx R_L/L_{\max}$$
 (20)

また,今回入力した地震波のマグニチュード*M*=9.0 につい て式(19)より得られる*r*_n=0.80 によれば,*F*_Lは次式となる。

図 14 地盤モデル A (a) と B (b) についての応力比 R_L
 と地震時せん断応力比 L_{max}の深度分布の対比

$$F_L = R/L \approx R_L / 1.2L_{\text{max}} \tag{21}$$

図 14(a)(b)には上記の r_n =0.65 と r_n =0.80 に対応した FL 算定式 (20), (21) による R_L と L_{max} または R_L と 1.2 L_{max} の比較が地盤モデル A と B の深度に対し示されている。 また,図 15 ではこれらから計算した F_L の深度分布を示す。

モデル A では道路橋示方書の液状化強度評価式によれ ば、 N_1 =8, F_c =0 の均質砂層で R_L =0.191 となる。RT 地震動 を加えた場合には、 r_n =0.65 (M=7.5) を適用して L_{max} と 比較すると、式(20)から L2 層では F_L ≈1.0 であり L3~L5 層では F_L <1.0 となり下の層ほど液状化し易いことになる。 また、 r_n =0.80 (M=9.0) に対応した式(21)を適用して 1.2 L_{max} と比較すると、L-2 層を含めすべてで F_L が 1.0 を大幅に下 回る。RT/2 地震動を加えた場合についても r_n =0.80 の方が r_n =0.65 より F_L は小さく、下の層ほど液状化し易い傾向は RT 地震動の結果と同様である。

ー方,モデル B では N_1 =8, 12 に対応して R_L =0.191, 0.234 であり, RT 地震動を加えた場合には, r_n =0.65 (M=7.5) に 対応した式(20)を適用して L_{max} と比較すると, L3 層は F_L <1.0 で液状化することになるが,他の層は $F_L\approx$ 1.0 であ る。 r_n =0.80 (M=9.0) に対応した式(21)を適用して 1.2 L_{max} と比較すると,全層で F_L <1.0 で液状化することになる。 RT/2 地震動を加えた場合については, r_n =0.80 (M=9.0) に ついては RT 地震動を加えた場合と傾向的に大きな差はな いが, r_n =0.65 (M=7.5) については L4, L5 層では液状化 せず L2, L3 層でのみ $F_L\approx$ 1.0 となる結果が得られる。

さらに同じ条件で RT と RT/2 地震動を比べると, A, B モデル共に,後者の方が少しずつ FL 値が大きくなってい ることが分かる。

図 15 地盤モデルA, B についてのFL 値の深度分布

以上のように、この検討例ではモデルA,B共にマグニ チュードの違いを考慮する応力低減係数 r_n の違いの影響 が地震動 RT, RT/2 の違いの影響より大きく現れている。 つまり応力法での係数 r_n の選び方の重要性を示唆してい る一方で、地震波動エネルギーの違いはFL値に大きくは 反映されないことが分かる。

6. エネルギー法による液状化判定

エネルギー法では設計地震により地盤が受ける上昇エ ネルギーが必要となる。ここでは同じ条件で結果を対比す るため、応力法で用いた応答計算結果から各層での上昇波 速度時刻歴を求め、それより式(11)で上昇エネルギーを計 算した。図 12の下段には、同図上段に示す RT, RT/2の 地表加速度時刻歴から計算した各層上端での上昇エネル ギーの時刻歴を地盤モデルAについて例示している。

上昇エネルギーは基盤からインピーダンスの小さな砂 層に入ると急激に減少するが、砂層内では大きくは変化し ないことが分かる。このようにして計算した上昇エネルギ ーの最終値(累積値) E_{uf} を液状化判定に用いる。実時間 の (a) RT に比べ時間軸を 1/2 に圧縮した(b)RT/2 の地震動 ではエネルギー値 E_{uf} はほぼ (1/2)³=1/8 に低下すること は式(11)からも明らかであり、振動数成分や継続時間は上 昇エネルギーに大きな影響を与えることになる。

具体的なエネルギー法の検討手順は以下のようになる。

- 対象地盤を標準貫入試験などの調査間隔に対応し厚 さ H=1~2m 程度の層に分割する。ここでは図 11 のよ うに H=2mで5 層に分割している。
- 各層についての N₁ 値から液状化発生に対する基準化 損失エネルギー ΔW/σ_c (ε_{DA}=5%) を細粒分含有率 F_cなどを考慮して決定する。モデル地盤では F_c=0 と し図 8 の関係を用いる。

- ΔW/σ_c に対応した基準化ひずみエネルギーW/σ_c を 式(7)により算定する。
- 4) 各層の有効上載圧 σ'_v から $\sigma'_c = (1+2K_0)\sigma'_v/3$ とし, 厚 さ H の各層の WH を算定する。以下では、WH を各 層の液状化必要エネルギーと呼ぶことにする。
- 5) 各層について、液状化必要エネルギーWHと地震波上 昇エネルギー最終値 E_{uf}の比WH/E_{uf}を計算し、その 値が小さいほど早く液状化し易いと考え、各層に i=1、 2、3、---の番号付けをする。その順に各層のWH/E_{uf}の 値を加え合わせ、その累計が次式のように 1.0 に達す るまでの層が液状化すると考える。地震波動から供給 されるエネルギーが液状化必要エネルギーを賄える 限界までは液状化すると考えていることになる。

$$\sum_{i} \left(WH \right)_{i} / \left(E_{uf} \right)_{i} < 1.0 \tag{22}$$

図 11 に示す地盤モデルにエネルギー法を適用した結果 を図 16 に示す。液状化必要エネルギーWH の値をモデル A と B についてそれぞれグラフ中に太い実線と破線で示 す。上昇エネルギー E_u については,RT 地震動については モデル A と B についてそれぞれ中細の実線と破線で示し, RT/2 地震動については極細の実線と破線で示している。 これらの単位はすべて kJ/m²である。

また図 17 には, 手順 5)にしたがい各層の WH/Euf とそ

れを小さい層から順々に加え合わせた $\sum (WH)_i / (E_{uf})_i$ の深度に対する変化を示している。 WH / E_{uf} の値は A, B モデル共に浅い方が小さく, 浅い層ほど早く液状化し易い ことになる。

RT 地震動については図 17 の白抜き印を結ぶ太い実線 から分かるように L2~L5 層の累積値はモデル A, B 共に $\sum (WH)_i / (E_{uf})_i < 1.0$ となり, 全層が液状化することにな る。 一方, RT/2 地震動については白抜き印を結ぶ太い破 線から分かるように, モデル A, B 共に L2 層のみが $\sum (WH)_i / (E_{uf})_i < 1.0$ を満足し, L3 層までを入れると

 $\sum (WH)_i / (E_{uf})_i > 1.0 となるため L2 層のみが液状化する。$

つまり, RT/2 地震動ではエネルギーが 1/8 に激減する効果 が液状化判定結果に大きく影響することになる。

以上のように、単純な地盤モデルに同一地震動を入力す る条件で行った現行の応力法と新規のエネルギー法によ る液状化判定の結果は図 15 と図 17 により比較できる。 さらに比較し易くするため、表 2 には 2 つの結果の主要な 数値を示し、応力法では FL 値が *FL*<1.0 の場合、エネルギ

ー法では累積エネルギー比が $\sum(WH)_i / (E_{uf})_i < 1.0$ の場合

について灰色で色付けしている。これより以下のような指摘が可能である。

- RT 地震動を入力した場合,2 つの判定法は定性的に ほぼ整合した結果を与える。ただしそのためには,応 力法については地震動の M=9.0 に見合って応力低減 係数を通常のr_n=0.65ではなくr_n=0.80とする必要が ある。エネルギー法ではこのような係数によらずとも, 損失エネルギーが液状化挙動とほぼ一意的関係があ ることを前提に,Mの大きな地震での継続時間の長さ の効果などが自動的に考慮できることが長所に挙げ られる。
- 2) RT/2 地震動により時間軸を 1/2 に圧縮する影響は, エ ネルギー法では応力法に比べて顕著に表れる。エネル ギー法では, モデル A, B 共に RT 地震動では全層液状 化するのに対し, RT/2 地震動では上昇エネルギーが 激減するため, 上部の L2 層のみが液状化することに

地盤モデル A		RT入力									RT/2入力							
層NO.	深度 (m)	FL法				エネルギー法				FL法				エネルギー法				
		RL	L _{max}	FL		(<i>H</i> =2 m)						FL		(<i>H</i> =2 m)				
				r _n =0.65 (<i>M</i> =7.5)	r _n =0.80 (<i>M</i> =9.0)	<i>WH</i> (kJ/m²)	E _u WH (kJ/m ²)	WH/E _u	累積	RL	L _{max}	r _n =0.65 (<i>M</i> =7.5)	r _n =0.80 (<i>M</i> =9.0)	<i>WH</i> (kJ/m²)	<i>E</i> _{<i>u</i>} (kJ/m ²)	WH/E _u	累積	
L2	2-4	0.191	0.188	1.01	0.85	3.65	39.7	0.09	0.09	0.191	0.182	1.05	0.88	3.65	5.42	0.67	0.67	
L3	4-6	0.191	0.222	0.86	0.72	5.11	40.0	0.13	0.22	0.191	0.194	0.99	0.82	5.11	5.57	0.92	1.59	
L4	6-8	0.191	0.234	0.82	0.68	6.57	41.4	0.16	0.38	0.191	0.205	0.93	0.78	6.57	5.83	1.13	2.72	
L5	8-10	0.191	0.233	0.82	0.68	8.03	43.1	0.19	0.56	0.191	0.211	0.91	0.75	8.03	6.02	1.33	4.05	
地盤モ	デル B	RT入力								RT/2入力								
層NO.	深度(m)	FL法 エネル					ギー法			FL法 エネルギー法								
		RL	L _{max}	F	L	((<i>H</i> =2 m)				FL		(<i>H</i> =2 m)				
				r _n =0.65 (<i>M</i> =7.5)	r _n =0.80 (<i>M</i> =9.0)	<i>WH</i> (kJ/m²)	E _u (kJ/m ²)	WH/E _u	累積	RL	L _{max}	r _n =0.65 (<i>M</i> =7.5)	r _n =0.80 (<i>M</i> =9.0)	<i>WH</i> (kJ/m²)	E _u (kJ/m ²)	WH/E _u	累積	
L2	2-4	0.191	0.188	1.02	0.85	3.65	39.7	0.09	0.09	0.191	0.182	1.05	0.88	3.65	5.44	0.67	0.67	
L3	4-6	0.191	0.222	0.86	0.72	5.11	40.0	0.13	0.22	0.191	0.195	0.98	0.82	5.11	5.64	0.91	1.58	
L4	6-8	0.234	0.235	1.00	0.83	13.97	49.3	0.28	0.50	0.234	0.203	1.15	0.96	13.97	6.81	2.05	3.63	
L5	8-10	0.234	0.237	0.99	0.82	17.08	50.9	0.34	0.84	0.234	0.211	1.11	0.92	17.08	7.01	2.44	6.06	

表 2 FL 法とエネルギー法の対比(灰色部分が液状化範囲; F_L<1.0, 累積エネルギー<1.0) 上段:地盤モデル A, 下段:地盤モデル B

なる。それに対し応力法で RT/2 地震動の場合には, $r_n = 0.80$ (M=9.0) とした場合,モデルA,B 共に全層 が液状化することになり,エネルギー法と大きく食い 違う。RT/2 地震動では $r_n = 0.80$ よりは $r_n = 0.65$ (M=7.5) に近いと考えた場合でも,モデルA では L2 層,L3 層では $F_L \approx 1.0$ で L4 層,L5 層と深くなるほど液状化 し易く,エネルギー法と応力法の食違いが目立つ。

3) 両者のさらに食違う点は、エネルギー法では均質砂層 において浅部の方から先に液状化し易いのに対し、応 力法ではむしろ下部の方が FL 値が低く液状化し易い 傾向となることである。均一砂層の多くの模型実験に おいて液状化が浅部から生じることが観察されてい る^{例えば 19})。震動の継続と共に液状化範囲は深部に拡 大していくにしても、このような実験的知見はエネル ギー法による判定のほうが実現象に近いことを示唆 しているように思われる。

7. まとめ

ー連の三軸液状化試験のデータを分析し,エネルギーに よる液状化判定の可能性を検討することにより,以下の知 見が得られた。

 液状化し易い緩詰め砂の試験データによれば、損失エ ネルギーを用いて水圧上昇やひずみ発生が地震波の 繰返し回数によらずほぼ一意的に評価できる。水圧に ついては 100%上昇までの液状化発生過程が,発生ひ ずみについては液状化発生後のひずみ成長までがエ ネルギーにより評価可能である。

- 2) 上記 1)によれば、少なくとも緩詰め砂の $R_L \sim N_c$ カー ブは等エネルギー線と解釈でき、ある規定ひずみに対 応した液状化強度比 R_L と損失エネルギー $\Delta W / \sigma'_c$ と の間には応力比や繰返し回数に依らず一意的関係が ある。したがって応力法で用いる標準貫入試験の N_1 と R_L の関係があれば $R_L \sim \Delta W / \sigma'_c$ 関係を使って $N_1 \sim$ $\Delta W / \sigma'_c$ 関係が容易に導ける。
- 基準化内部損失エネルギーΔW/σ'c と基準化ひずみ エネルギーW/σ'cの間には、相対密度や細粒分含有率 の違いに関わらず、ほぼ一意的関係が成り立つ。
- 4) W/σ'c は液状化に必要な単位体積当たりの外部基準化 エネルギーであり、厚さ H の層についての液状化必 要エネルギーは WH で算定できる。これを原地盤での 上昇波動エネルギーEuと対比することにより、各層の 液状化判定が可能となる。
- 5) 上昇波動エネルギーEuの設定には地震マグニチュードと震源距離による簡易法や設計地震動を使った1次元重複反射解析によるものなど幾つかの方法が考えられる。
 - また,エネルギー法と応力法を2つのモデル地盤(均質

モデル A と不均質モデル B) に適用し, *M*=9.0 の地震動を 地表入力した場合について液状化判定を行い,以下の主な 知見を得た。

- 6) 実時間の地震動(RT)を入力した場合,2つの判定法はA,Bモデル共に大まかには整合した結果を与える。ただしそのためには、応力法での応力低減係数を通常のr_n=0.65ではなくM=9.0に見合ってr_n=0.80とする必要がある。エネルギー法ではこのような係数によらずMに対応した繰返し回数などの効果が自動的に考慮できることが長所に挙げられる。
- 7) 時間軸を1/2に圧縮した地震動(RT/2)を入力すると, エネルギーは1/8に縮小するためエネルギー法では応 力法に比べて影響が顕著に表れやすいのに対し,応力 法では時間軸短縮の影響は小さい。
- 8) モデルA, Bや時間軸の違いに依らず,エネルギー法では浅部の方が液状化し易いのに対し,応力法ではむしろ下部の方がFL値が低く液状化し易い全般的傾向が見られる。均一砂層の多くの模型実験においては液状化が浅部から生じることが観察されており,エネルギー法による判定のほうが実現象に近いことを示唆している。

液状化が損失エネルギーと一意的に結びついているこ とを前提とすれば,エネルギー法の方が地震波動の特徴も 捉えやすく応力法より合理的であると言えよう。また,エ ネルギー法は応力法の地盤データがあれば容易に実施可 能であるが,地震波動によるエネルギーを如何に合理的か つ簡便に評価するかがポイントとなろう。実績の少ないエ ネルギー法については,今後このような観点から,多数の 液状化事例に適用することによってその信頼性を実証し ていく必要がある。

謝辞:

本研究で用いた三軸試験データやエネルギー分析デー タについては、中央大学大学院博士前期課程の大学院生で あった加藤 亮、伊藤文樹、長尾洋太君はじめ多くの学生 諸氏の実験データとデータ分析に基づいている。また、 株・地震工学研究所には本研究で用いた等価線形解析の商 用ソフトウェアを提供いただいた。これら関係各位に謝意 を表します。

参考文献

- Seed, H. B. and Idriss, I. M.: Simplified procedure for evaluating soil liquefaction potential, Journal of SMFE Div. ASCE, 97 (9), pp 1249-1274, 1971.
- NRC: National Research Council: Liquefaction of soils during earthquakes, Committee of Earthquake Engineering, Commission of Engineering and Technical Systems, National Academy Press, Washington, D.C, 1985.
- Davis, R. O. and Berrill, J. B.: Energy Dissipation and Seismic Liquefaction of Sands, *Earthquake Engineering & Structural*

Dynamics, Vo.10, 59-68, 1982).

- Berrill, J. B. and Davis, R. O.: Energy dissipation and seismic liquefaction of sands: Revised model, *Soils and Foundations*, Japanese Society of Soil Mechanics and Foundation Engineering, Vol.25, No.2, pp. 106-118, 1985.
- Towhata, I. and Ishihara, K.: Shear work and pore water pressure in undrained shear, *Soils & Foundations*, Vol.25, No.3, 73-84, 1985.
- 6) Yanagisawa, E. and Sugano, T.: Undrained shear behaviors of sand in view of shear work, Intern. Conf. on SMFE (Special Volume on Performance of Ground and Soil Structures during Earthquakes), New Delhi, India, Balkema Publishers 155-158, 1994.
- Figueroa, J. L., Saada, A. S., Liang, L. and Dahisaria, N. M.: Evaluation of soil liquefaction by energy principles, *Journal of Geotechnical Engineering*, ASCE, 120 (9), 1554-1569, 1994.
- 8) 風間基樹,鈴木崇弘,柳沢栄司:地盤に入力された累積損失 エネルギーの評価法と液状化予測への適用,土木学会論文集 No.631/III-48, 161-177, 1999.
- Russell, G. A. and Terri, G. A.: Number of equivalent cycles concept for liquefaction evaluations revisited. Journal Geotech. & Geoenv. Eng. Vol. 131, No. 4, 477-488, 2005.
- 10) 伊藤文樹,國生剛治,長尾洋太:非塑性細粒分を含む砂の液 状化強度~コーン貫入抵抗関係への年代効果の影響,土木学 会論文集C, Vol.67, No.1, 26-35, 2011.
- (社)日本道路協会:道路橋示方書・同解説 V 耐震設計編, 12章,平成14年,2002.
- Gutenberg, B.: The energy of earthquakes, *Quarterly Journal of* the Geological Society of London, Vol.CXII, No.455, 1-14, 1956.
- 13) 國生剛治,鈴木 拓:強地震鉛直アレー記録に基づいた地盤 中の波動エネルギーフロー,日本地震工学会論文集 (電子 ジャーナル)第11 巻,第1号,14-31,2011.
- 14) 國生剛治,鈴木 拓:強地震鉛直アレー記録に基づいた地盤 中の波動エネルギーフロー(補遺),日本地震工学会論文集 (電子ジャーナル)第12巻,第5号,2012.
- 15) Schnabel, P. B., Lysmer, J. and Seed, H. B.: SHAKE A Computer Program for Earthquake Response Analysis of Horizontally Layered Sites, Report EERC 72-12, University of California, Berkeley, 1972.
- Hardin, B. O. and Drnevich, V. P.: Shear modulus and damping in soils: measurement and parameter effects, Journal of SMFD, ASCE, Vol.98, SM6, 603-624, 1972.
- 17) 國生剛治,本山隆一:等価線形解析の大ひずみレベルへの適用の試み(せん断剛性比,減衰定数のひずみ依存性の定式化)」 第26回地盤工学研究発表会,1998.
- Tokimatsu, K. and Yoshimi, Y.: Empirical coorelation of soil liquefaction based on SPT N-value and fines content, *Soils and Foundations*, 23 (4), 56-74, 1983.
- 国生剛治: せん断土槽による砂の液状化実験,第9回土質工 学研究発表会,土質工学会,387-390、1974.

(2012.11.26 受付)

Applicability of energy-based liquefaction potential evaluation method compared with FL-method

Takaji KOKUSHO¹

1 Department of Civil & Environment Eng., Chuo University

Abstract

A stress-based method (FL-method) is employed for liquefaction potential evaluations in many design codes, while an energy-based method is very limited in engineering practice, despite that close correlations between dissipated energy and liquefaction behaviors are recognized. In this paper, undrained cyclic triaxial tests on sands with varied density and fines content are first reviewed and interpreted in view of energy. Strain amplitude or pore-pressure buildup during loading is found to be uniquely related to dissipated energy in soil specimens. The energy-based method is then implemented in which liquefaction potential is evaluated by comparing dissipated energy with upward wave energy, and applied to a sand deposit shaken by a seismic motion. The result is compared with a conventional FL-method using the same seismic motion to demonstrate advantages and potentials of the energy method.

Key words: liquefaction potential evaluation, dissipated energy, upward wave energy, earthquake magnitude, cyclic triaxial test